LogoLogo
IntegrationsInstallationAdministrationContact Support
XMPro Platform
XMPro Platform
  • What is XMPro?
  • Getting Started
    • Browser Requirements
    • Free Trial
    • End-To-End Use Case
  • Resources
    • What's New in 4.4
      • What's New in 4.3
      • What's New in 4.2
      • What's New in 4.1.13
      • What's New in 4.1
      • What's New in 4.0
    • Blueprints, Accelerators & Patterns
    • Integrations
    • Sizing Guideline
    • Platform Security
    • Icon Library
    • FAQs
      • Implementation FAQs
      • Configuration FAQs
      • Agent FAQs
      • General FAQs
      • External Content
        • Blogs
          • 2024
            • How to Build Multi-Agent Systems for Industry
            • Why Solving the Problem Doesn’t Solve the Problem: The Importance of Scalable Intelligent Operations
            • Content, Decision, and Hybrid: The Three Pillars of Multi-Agent Systems in Industry
            • Revolutionizing Manufacturing with AI and Generative AI: XMPro’s Intelligent Business Operations Sui
            • The Evolution of Skills: Lessons from Agriculture in the GenAI and MAGS Era
            • Part 1: From Railroads to AI: The Evolution of Game-Changing Utilities
            • Part2: The Future of Work: Harnessing Generative Agents in Manufacturing
            • Bridging Automation and Intelligence: XMPro’s Approach to Industrial Agent Management
            • XMPro APEX: Pioneering AgentOps for Industrial Multi Agent Generative Systems
            • Part 5 – Rules of Engagement: Establishing Governance for Multi-Agent Generative Systems
            • How to Achieve Scalable Predictive Maintenance for Industrial Operations
            • Understanding the Difference Between XMPro AI Assistant and AI Advisor
            • Part 3 – AI at the Core: LLMs and Data Pipelines for Industrial Multi-Agent Generative Systems
            • MAGS: The Killer App for Generative AI in Industrial Applications
            • The Importance of Pump Predictive Maintenance for Operational Efficiency
            • Progressing Through The Decision Intelligence Continuum With XMPro
            • The Value-First Approach to Industrial AI: Why MAGS Implementation Must Start with Business Outcomes
            • New Guide – The Ultimate Guide to Multi-Agent Generative Systems
            • The Ultimate Guide To Predictive Analytics
            • Part 4 – Pioneering Progress | Real-World Applications of Multi-Agent Generative Systems
            • Scaling Multi-Agent Systems with Data Pipelines: Solving Real-World Industrial Challenges
          • 2023
            • How to master Predictive Analytics using Composable Digital Twins
            • Accelerate Your AI Workflow: The 3 Key Business Advantages of XMPro Notebook
            • The Roadmap to Intelligent Digital Twins
            • What is edge computing, and how can digital twins utilize this technology?
            • THE TOP 5 USE CASES FOR COMPOSABLE DIGITAL TWINS IN RENEWABLES + HOW TO SUPERCHARGE RESULTS WITH AI
            • The Technology Behind Predictive Maintenance (PdM) : Hardware & Software
            • The Benefits of Using Digital Twins in Smart Manufacturing
            • XMPro I3C Intelligent Digital Twins Strategy Framework
            • The TOP 5 use cases for composable digital twins in mining – and how to use AI to supercharge result
            • The TOP 5 use cases for Composable Digital Twins in the Oil & Gas industry
            • Why Decision Intelligence with Digital Twins is “kinda like” DCS for Automation and Control
            • XMPro becomes an NVIDIA Cloud-Validated partner
            • From Reactive to Predictive : Introduction to Predictive Maintenance
            • Microsoft Azure Digital Twins : Everything You Need To Know
            • Unlocking Efficiency: The Right Time & Strategy to Launch Your Digital Twin for Enhanced Asset Manag
            • Revolutionize Your Supply Chain: How Digital Twins Can Boost Efficiency and Cut Costs
          • 2022
            • Create a Common Operating Picture of Your Operations with XMPro
            • 7 Trends for Industrial Digital Twins in 2022
            • How to Build a Digital Twin + 60 Use Cases By Industry
            • What are composable digital twins in the metaverse?
          • 2021
            • The Value of a Composable Digital Twin
          • 2020
            • Lean Digital Twin: Part 2
            • Digital Twin: Your Most Productive Remote Worker
            • From the Control Room to the Bedroom
            • Lean Digital Twin: Part 3
          • 2019
            • My Digital Twin: Digital Twin Applications for Real-time Operations (Like Me)
          • 2018
            • XMPro IoT Operational Capability Survey Results 2018
            • What is a Digital Business Platform and Why Should I Care?
            • [Robotic] Process Automation for IoT
            • 3 Patterns of Industrial IoT Use Cases
            • The CXO’s Guide to Digital Transformation – May The Five Forces Be With You
            • Is Security More Important Than Trustworthiness for Industrial IoT?
            • XMPro at bpmNEXT 2018: Watch The Presentation
          • 2017
            • The Top 5 Reasons to Invest in an IIoT Development Platform
            • IoT Business Solutions Start with Big Data & Create Business Outcomes
            • How AI Bots Bring Digital Twins to Life
          • 2016
            • How To Get Started With Industrial IoT
            • How To Overcome The Top 5 Challenges To Industrial IoT Adoption
            • What is an IoT Platform vs. an IoT Business Application Suite?
            • Industrial IoT: How To Get Started with Predictive Maintenance
            • 3 Ways The Internet of Things is Transforming Field Service
            • 7 Types of Industrial IoT Data Sources (And How To Use Them)
          • 2015
            • How Important Are Processes To The Internet Of Things?
            • Understanding the Value of Real Time KPI Management as Your Next Strategic Project
            • 6 Myths About Machine Learning
            • 10 Predictive Analytics Use Cases By Industry
            • What is a “Business Moment” in your business?
            • Does Operational Intelligence Make Business Intelligence Obsolete?
            • How To Reduce Operational Costs by 36% with Predictive Analytics
            • From Many, One – The Nature of Complex Event Processing
            • Herding Cats: What Enterprise Architects need to know about Business Process Management
          • 2014
            • Making Business Operations More Intelligent
          • 2013
            • Best Next Action Is The Next Big Thing For Intelligent Operations
            • The learns from two ‘Best in class’ organisations acquiring BPM technology
          • 2012
            • Why Intelligent Business Operations is Mobile, Social and Smart
            • Why Do You Want Intelligent Business Operations?
            • How big of a problem are ‘dark processes’?
            • Operational Risk: When You Stick Your Head In The Sand
            • The Difference Between Event-based And Workflow-based Processes
          • 2011
            • Is mobile BPM now essential to the business?
            • Stretch Socially Dynamic Processes To Fit Your Business
            • Social Listening – Get Control Of The Conversation
            • Operations Management – The Keys To KPIs
            • Benefits of BPM v 1.0
            • How to Prioritise Processes
          • 2010
            • The Business Drivers
            • Preserving Capability and Agility
            • Mobile BPM
        • Use Cases
          • Aging Pipe Predictive Maintenance in Water Utilities
          • Air Quality Monitoring For Agriculture
          • Alarm Management and Triage
          • Asset Condition Monitoring for Surface Processing Plants in the Mining Industry
          • Bogie Health Monitoring in the Rail Industry
          • Boiler Feed Water Pumps
          • CHPP Throughput Loss Monitoring
          • Casting Guidance
          • Conveyor Belt System Monitoring and Optimization in Automotive Manufacturing
          • Cooling Tower Fin Fan Monitoring
          • Cyclone/Slurry Pump Monitoring
          • Demand Planning to Reduce Stockholding in Stores
          • Demin Water Monitoring for Boiler Tube Corrosion
          • EV Battery Assembly Process Optimization for the Car Manufacturing Industry
          • Flood Prediction & Response in Water Utilities
          • Golden Batch For Culture Addition In The Dairy processing Industry.
          • Golden Batch Monitoring
          • Improve First Pass Yield (FPY)
          • Induced Draft (ID) Fan Monitoring
          • Long Conveyor Monitoring
          • Monitor Process Health to Reduce Cash-to-Cash Cycle
          • Monitor Storm Water Reservoirs For Flood Prevention
          • Monitor and Reduce Energy Consumption
          • Oil Well Maintenance Planning
          • Oil Well RTP Monitoring
          • Pipe Scaling Prediction for Roller Cooling
          • Precision Irrigation in Agriculture
          • Predict Heat Exchanger Fouling
          • Predictive Maintenance & Asset Health Monitoring For Haul Trucks In The Mining Industry
          • Predictive Maintenance For Mobile Assets Within The Mining Industry
          • Predictive Maintenance for Robotic Arms in the Automotive Industry
          • Predictive Maintenance for Wind Turbines
          • Pump Health Monitoring in Water Utilities
          • Pumping Station OEE
          • Real-time Balanced Business Scorecard (BBS)
          • Real-time Safety Monitoring
          • Short Term Inventory Planning
          • Strategic Performance & Safety Oversight for Global Mining Operations
          • Wheel and Track Wear Monitoring In The Rail Industry
          • Wind Turbine Performance Optimization
        • Youtube
          • 2024
            • Discover Gen AI Powered Operations With XMPro iBOS
            • Generative AI and Digital Twins in 2024 - XMPro Webinar
            • Go From Reactive To Predictive Operations In Water Utilities With XMPro iDTS
            • How to add Timestamps to Elements in XMPro App Designer
            • How to Build an AI Advisor for Industrial Operations Using XMPro
            • How XMPro Stream Hosts and Collections Enable Scalable, Real-Time Data Processing
            • Mind Blowing AI Agentic Operations For Industry With XMPro MAGS
            • The Ultimate Beginner's Guide To Predictive Analytics Podcast
            • XMPro's Flexible Deployment Options: Flexible Cloud & On-Premise Solutions For Industry
            • XMPro iBOS: The Only AI-Powered Suite for Scalable Intelligent Operations
          • 2023
            • 2023 XMPro Product Roadmap - Webinar
            • An Introduction To Intelligent Digital Twins - Webinar
            • Energy and Utilities Asset Optimisation through Digital Twin technology
            • Explore Model Governance using our MLflow Agent
            • Exploring XMPro Notebook and MLflow for Data Science and Model Governance
            • How Changing Properties For One Block Can Be Applied To All Blocks Within Same Style Group
            • How do I Use A Button To Update a Data Source In XMPro App Designer
            • How Does XMPro Compare To ESBs (Enterprise Service Buses)-
            • How to Configure and Integrity Check in Data Streams
            • How To Create A Widget Within XMPro App Designer
            • How to Create Intelligent Digital Twins Using XMPro AI
            • How to export grid data to Excel In XMPro App Designer
            • How to Revolutionize Your Supply Chain with Digital Twins
            • How To Rotate Text In App Designer
            • How To Update a Data Source Using A Button
            • How To Use & Clone XMPro Demos For Your Own Use
            • How To Use And Build 3rd Party Apps To Extend The Capabilities Of The XMPro App Designer.
            • How to use Avatars and why they are important
            • How to view stream host logs In XMPro Data Stream Designer
            • Logging Provider Support With XMPro
            • Mastering Health Check Endpoints: A Guide to Ensuring Service Uptime and Performance with XMPro
            • Mastering Root Cause Analysis with XMPro: Capture, Value, Impact
            • Microsoft Azure Digital Twins Everything You Need To Know
            • Model Based Predictive Maintenance (PdM) With XMPro
            • Monthly Webinar - Accelerate your digital twin use cases - XMPro Blueprints, Accelerators & Patterns
            • Optimizing Time Series Chart (TSC) Performance
            • Predictive Maintenance & Condition Monitoring - A Hot Seat Q&A Session
            • Predictive Maintenance with XMPro iDTS
            • Smart Facilities Management with Intelligent Digital Twins
            • The Benefits of using Digital Twins in Smart Manufacturing
            • The Four Industrial Revolutions Explained In Under 4 Minutes! #industry4 #smartmanufacturing
            • The Roadmap To Intelligent Digital Twins
            • The Technology Behind Predictive Maintenance (PdM) - The Hardware & Software that makes PdM Tick...
            • THE TOP USE CASES FOR COMPOSABLE DIGITAL TWINS IN RENEWABLES
            • Tips on how to use cache in agent configuration and get live updates
            • Webinar - XMPro 4.3 Release Showcase
            • What is a Digital Twin- Why Composable Digital Twins is the Future.
            • What Is Predictive Maintenance- (PdM)
            • What To Do When a Data Source Is Not Showing in Pass Page Parameter
            • XMPro - The World's Only AI - Powered Intelligent Digital Twin Suite
            • XMPro - The World's Only No Code Digital Twin Composition Platform
            • XMPro AI : How It Works
            • XMPro AI End To End Use Case
            • XMPro Auto Scale - Understanding Distributed Caching for Cloud-Native Applications
            • XMPro Promo Video - Dell Validated Design For Manufacturing Edge
          • 2022
            • Aggregate Transformation Agent Example - XMPRO Data Stream Designer
            • App Layout Best Practices for Desktop & Mobile - XMPro Lunch & Learn
            • Broadcast Transformation Agent Example - XMPRO Data Stream Designer
            • Calculated Field Transformation Agent Example - XMPRO Data Stream Designer
            • CRC16 Function Agent Example - XMPRO Data Stream Designer
            • Create a Common Operating Picture of Your Operations with XMPro
            • CSV Context Provider Agent Example - XMPro Data Stream Designer
            • CSV Simulator Agent Example - XMPRO Data Stream Designer
            • CSV Writer Agent Example - XMPRO Data Stream Designer
            • Data Conversion Transformation Agent Example - XMPro Data Stream Designer
            • Digital Twin Strategy To Execution Pyramid - XMPro Webinar
            • Event Printer Action Agent Example - XMPRO Data Stream Designer
            • File Listener Agent Example - XMPRO Data Stream Designer
            • Filter Transformation Agent Example - XMPRO Data Stream Designer
            • Group & Merge Transformation Agent Example - XMPRO Data Stream Designer
            • How To Bind Data To A Chart and Get It Working As Expected - XMPro Lunch & Learn
            • How To Send Data To My App (Including Caching Introduction) - XMPro Lunch & Learn
            • Join Transformation Agent Example - XMPRO Data Stream Designer
            • Min/Max Function Agent Example - XMPRO Data Stream Designer
            • PART 1- How To Manage Complex Operations in Real-time Using Composable Digital Twins
            • PART 3 - How To Manage Complex Operations in Real-time Using Composable Digital Twins
            • PART2 - How To Manage Complex Operations in Real-time Using Composable Digital Twins
            • Pass Through Agent Example - XMPRO Data Stream Designer
            • Pivot Table Transformation Agent Example - Count - XMPRO Data Stream Designer
            • Pivot Table Transformation Agent Example - Sum - XMPRO Data Stream Designer
            • Real-Time Is Real - How To Use Event Intelligence Tools to Manage Complex Operations in Real-time.
            • Row Count Agent Example - XMPRO Data Stream Designer
            • Sort Transformation Agent Example - XMPRO Data Stream Designer
            • Transpose Transformation Agent Example - Columns - XMPRO Data Stream Designer
            • Transpose Transformation Agent Example - Rows - XMPRO Data Stream Designer
            • Trim Name Transformation Agent Example - XMPRO Data Stream Designer
            • Twilio Action Agent Example - XMPRO Data Stream Designer
            • Union Transformation Agent Example - XMPRO Data Stream Designer
            • Variables & Expressions in App Designer - XMPro Lunch & Learn
            • Window Transformation Agent Example - XMPRO Data Stream Designer
            • XML File Reader Action Agent Example - XMPRO Data Stream Designer
          • 2021
            • The Value of a Composable Digital Twin - XMPro Webinar
          • 2020
            • 1. Understanding The Problem - UX Design - XMPRO
            • 1.1 Welcome - XMPRO UI Design Basics
            • 1.2 Introduction To UI Design - XMPRO UI Design Basics
            • 2. Creating User Stories - UX Design - XMPRO
            • 2.1 Responsive Design - XMPRO UI Design Basics
            • 2.2 Grids - XMPRO UI Design Basics
            • 2.3 Visual Hierarchy - XMPRO UI Design Basics
            • 2.4 Wireframes - XMPRO UI Design Basics
            • 3. Creating User Flow Diagrams - UX Design - XMPRO
            • 3.1 Color Palette - XMPRO UI Design Basics
            • 3.2 Typography - XMPRO UI Design Basics
            • 3.3 White Space - XMPRO UI Design Basics
            • 3.4 UI Elements - XMPRO UI Design Basics
            • 4. Plan Your App with Wireframes - UX Design - XMPRO
            • 4.1 Chart Types - XMPRO UI Design Basics
            • 4.2 Chart Styling - XMPRO UI Design Basics
            • 5. Designing for Dynamic Data - UX Design - XMPRO
            • Agents and Their Types - XMPRO Data Stream Designer
            • Data Wrangling: Row Transpose - XMPRO Data Stream Designer
            • Digital Twin: Your Most Productive Remote Worker - XMPRO Webinar
            • End-To-End Real-Time Condition Monitoring Demo - XMPRO Application Development Platform
            • Error Endpoints - XMPRO Data Stream Designer
            • Export and Import Recommendations - XMPRO App Designer
            • How To Add Buttons To Agents - XMPRO Data Stream Designer
            • How To Add EditLists to Agents - XMPRO Data Stream Designer
            • How To Change UI Language - XMPRO Subscription Manager
            • How To Configure a Stream Object - XMPRO Data Stream Designer
            • How To Configure The Aggregate Transformation - XMPRO Data Stream Designer
            • How To Configure The Anomaly Detection Agent - XMPRO Data Stream Designer
            • How To Configure The Azure SQL Action Agent - XMPRO Data Stream Designer
            • How To Configure The Azure SQL Context Provider - XMPRO Data Stream Designer
            • How To Configure The Azure SQL Listener - XMPRO Data Stream Designer
            • How To Configure The Calculated Field Transformation - XMPRO Data Stream Designer
            • How To Configure The CSV Context Provider - XMPRO Data Stream Designer
            • How To Configure The CSV Listener - XMPRO Data Stream Designer
            • How To Configure The Data Conversion Transformation - XMPRO Data Stream Designer
            • How To Configure The Edge Analysis Transformation - XMPRO Data Stream Designer
            • How To Configure The Email Action Agent - XMPRO Data Stream Designer
            • How To Configure The Email Listener - XMPRO Data Stream Designer
            • How To Configure The Event Printer Action Agent - XMPRO Data Stream Designer
            • How To Configure The Event Simulator Listener - XMPRO Data Stream Designer
            • How To Configure The FFT Function - XMPRO Data Stream Designer
            • How To Configure The File Listener - XMPRO Data Stream Designer
            • How To Configure The Filter Transformation - XMPRO Data Stream Designer
            • How To Configure The IBM Maximo Action Agent - XMPRO Data Stream Designer
            • How To Configure The IBM Maximo Context Provider - XMPRO Data Stream Designer
            • How To Configure The IBM Maximo Listener - XMPRO Data Stream Designer
            • How To Configure The Join Transformation - XMPRO Data Stream Designer
            • How To Configure The JSON File Reader Context Provider - XMPRO Data Stream Designer
            • How To Configure The MQTT Action Agent - XMPRO Data Stream Designer
            • How To Configure The MQTT Advanced Action Agent - XMPRO Data Stream Designer
            • How To Configure The MQTT Advanced Listener - XMPRO Data Stream Designer
            • How To Configure The MQTT Listener - XMPRO Data Stream Designer
            • How To Configure The Normalize Fields Function - XMPRO Data Stream Designer
            • How To Configure The OSIsoft PI Context Provider - XMPRO Data Stream Designer
            • How To Configure The OSIsoft PI Listener - XMPRO Data Stream Designer
            • How To Configure The Pass Through Transformation - XMPRO Data Stream Designer
            • How To Configure The PMML Agent - XMPRO Data Stream Designer
            • How To Configure The REST API Context Provider - XMPRO Data Stream Designer
            • How To Configure The RScript Agent - XMPRO Data Stream Designer
            • How To Configure The Run Recommendation Agent - XMPRO Data Stream Designer
            • How To Configure The Signal Filter - XMPRO Data Stream Designer
            • How To Configure The SQL Server Action Agent - XMPRO Data Stream Designer
            • How To Configure The SQL Server Context Provider - XMPRO Data Stream Designer
            • How To Configure The SQL Server Listener - XMPRO Data Stream Designer
            • How To Configure The SQL Server Writer Action Agent - XMPRO Data Stream Designer
            • How To Configure The Twilio Action Agent - XMPRO Data Stream Designer
            • How To Configure The Union Transformation - XMPRO Data Stream Designer
            • How To Configure The Unzip Function - XMPRO Data Stream Designer
            • How To Configure The Window Transformation - XMPRO Data Stream Designer
            • How To Create an App - XMPRO App Designer
            • How To Create and Manage Templates - XMPRO App Designer
            • How To Create and Publish a Use Case - XMPRO Data Stream Designer
            • How To Create and Use a Widget - XMPRO App Designer
            • How To Create App Data Connections - XMPRO App Designer
            • How To Create App Pages and Navigation - XMPRO App Designer
            • How To Create Recommendation Rules - XMPRO App Designer
            • How To Create Recurrent Data Streams - XMPRO Data Stream Designer
            • How To Do Integrity Checks - XMPRO Data Stream Designer
            • How To Edit Page Properties - XMPRO App Designer
            • How To Enable Audit Trails - XMPRO App Designer
            • How to Export, Import, and Clone a Data Stream - XMPRO Data Stream Designer
            • How To Export, Import and Clone an App - XMPRO App Designer
            • How to Export and Import an App - XMPRO App Designer
            • How To Find Help for an Agent - XMPRO Data Stream Designer
            • How To Install The XMPRO App Designer
            • How To Maintain and Capture Notes - XMPRO App Designer
            • How To Manage Agents - XMPRO Data Stream Designer
            • How To Manage and Use Server Variables - XMPRO Data Stream Designer
            • How To Manage Buffer Size - XMPRO Data Stream Designer
            • How to Manage Categories - XMPRO App Designer
            • How To Manage Categories - XMPRO Data Stream Designer
            • How To Pass Parameters Between Pages - XMPRO App Designer
            • How To Publish and Share an Application - XMPRO App Designer
            • How To Set Up and Use Charts in Live View - XMPRO Data Stream Designer
            • How To Set Up and Use Gauges in Live View - XMPRO Data Stream Designer
            • How To Share a Data Stream - XMPRO Data Stream Designer
            • How To Share a Use Case - XMPRO Data Stream Designer
            • How To Share an App For Design Collaboration - XMPRO App Designer
            • How To Troubleshoot a Use Case - XMPRO Data Stream Designer
            • How To Upgrade a Stream Object Version - XMPRO Data Stream Designer
            • How To Use App Files - XMPRO App Designer
            • How To Use Application Versions - XMPRO App Designer
            • How To Use Bar Gauge - XMPRO App Designer
            • How To Use Calendar - XMPRO App Designer
            • How To Use Chart Pan, Zoom and Aggregation - XMPRO App Designer
            • How To Use Chart Panes and Axes - XMPRO App Designer
            • How To Use Chart Print and Export- XMPRO App Designer
            • How To Use Charts - XMPRO App Designer Toolbox
            • How To Use Charts: Series - XMPRO App Designer
            • How To Use Collections - XMPRO Data Stream Designer
            • How To Use Content Card - XMPRO App Designer
            • How To Use D3 - XMPRO App Designer
            • How To Use Data Sources - XMPRO App Designer
            • How To Use Embedded Pages - XMPRO App Designer Toolbox
            • How To Use Fieldset and Field - XMPRO App Designer Toolbox
            • How To Use Flex Layout
            • How To Use Form Validation - XMPRO App Designer Toolbox
            • How To Use Input Mappings - XMPRO Data Stream Designer
            • How To Use Linear Gauges - XMPRO App Designer
            • How To Use Live View - XMPRO Data Stream Designer
            • How To Use Lookup - XMPRO App Designer
            • How To Use Maps - XMPRO App Designer
            • How To Use Page Layers - XMPRO App Designer
            • How To Use Pivot Grid - XMPRO App Designer
            • How To Use Polar Charts - XMPRO App Designer
            • How To Use Power BI - XMPRO App Designer
            • How To Use Radio Buttons - XMPRO App Designer Toolbox
            • How To Use Recommendations - XMPRO App Designer Toolbox
            • How To Use Select Box - XMPRO App Designer
            • How To Use Stacked Layouts - XMPRO App Designer Toolbox
            • How To Use Stream Host Local Variables - XMPRO Data Stream Designer
            • How To Use Tabs - XMPRO App Designer Toolbox
            • How To Use Tags - XMPRO App Designer Toolbox
            • How To Use Templated List - XMPRO App Designer
            • How To Use Templates - XMPRO App Designer
            • How To Use Text - XMPRO App Designer Toolbox
            • How To Use Text Area - XMPRO App Designer Toolbox
            • How To Use The Accordion - XMPRO App Designer Toolbox
            • How To Use The Block Styling Manager - XMPRO App Designer
            • How To Use The Box and Data Repeater Box - XMPRO App Designer Toolbox
            • How To Use The Button - XMPRO App Designer Toolbox
            • How To Use The Circular Gauge - XMPRO App Designer Toolbox
            • How To Use The Data Grid - XMPRO App Designer Toolbox
            • How To Use The HTML Editor - XMPRO App Designer Toolbox
            • How To Use The Hyperlink and Box Hyperlink - XMPro App Designer Toolbox
            • How To Use The Image - XMPRO App Designer Toolbox
            • How To Use The Indicator - XMPRO App Designer Toolbox
            • How To Use The Layout Grid - XMPRO App Designer Toolbox
            • How To Use The Number Selector - XMPRO App Designer Toolbox
            • How To Use The Pie Chart - XMPRO App Designer Toolbox
            • How To Use The Range Slider - XMPRO App Designer Toolbox
            • How To Use The Recommendation Chart - XMPRO App Designer Toolbox
            • How To Use The Scroll Box - XMPRO App Designer Toolbox
            • How To Use The Select Box - XMPRO App Designer Toolbox
            • How To Use The Sparkline - XMPRO App Designer Toolbox
            • How To Use The Textbox - XMPRO App Designer Toolbox
            • How To Use Tree Grid - XMPRO App Designer
            • How To Use Tree List - XMPRO App Designer
            • How To Use Unity - XMPRO App Designer Toolbox
            • How To Use Variables - XMPRO App Designer
            • How To Write and Maintain Notes and Business Case - XMPRO Data Stream Designer
            • Interactive 3D Models For Digital Twins - XMPRO Event Intelligence Platform
            • Manage Input Arrow Highlights - XMPRO Data Stream Designer
            • Manage Recommendation Access - XMPRO App Designer
            • Realize Value from End-To-End Condition Monitoring in 6 - 8 Weeks - XMPRO
            • Recommendation Versions - XMPRO App Designer
            • Solution Development Process For Event Intelligence Apps - XMPRO
            • Stream Hosts and How To Install Them - XMPRO Data Stream Designer
            • Use Case Versioning - XMPRO Data Stream Designer
            • XMPRO App Designer Overview - Event Intelligence Applications
            • XMPRO Data Stream Designer - Event Intelligence Applications
            • XMPRO Real-Time Event Intelligence Demo
            • XMPRO Recommendations - Event Intelligence Applications
          • 2019
            • Data Distribution Service: Using DDS in Your IoT Applications
            • My Digital Twin: Digital Twin Applications For Real-Time Operations (Like Me)
            • Setting up a Typical Industrial IoT Use Case with XMPro
            • XMPro Overview & Fin Fan Failure Demo
          • 2016
            • XMPro iBPMS Overview
          • 2013
            • XMPro Best Next Action - 3 Examples for XMPro blog
            • XMPro Case Management Example
            • XMPro Internet of Things Demo
          • 2012
            • Is Agile Business the New Normal
            • The Future of BPM Moving Towards Intelligent Business Operations
            • What industries does XMPro serve-
            • Who is XMPro for-
            • XMPro - The Social Listener - Why You Should Be Listening.wmv
            • XMPro Cool Vendor 2012
            • XMPro iBPMS For SharePoint
            • XMPro iBPMS v6 XMWeb for Intelligent Business Operations
            • XMPro News and Gartner BPM Sydney Summit Discount Offer.mp4
            • XMPro Version 6 - Introducing the Next Generation BPM for Intelligent Business Operations
    • Practice Notes
      • Unified Recommendation Alert Management
      • Performant Landing Pages in Real-Time Monitoring
  • Concepts
    • XMPro AI
      • XMPro Notebook
    • Data Stream
      • Stream Object Configuration
      • Verifying Stream Integrity
      • Running Data Streams
      • Timeline
    • Collection and Stream Host
    • Agent
      • Virtual vs Non-Virtual Agents
    • Application
      • Template
      • Page
      • Block
      • Canvas
      • Page Layers
      • Block Styling
      • Devices
      • Flex
      • Block Properties
      • Data Integration
      • Navigation and Parameters
      • Variables and Expressions
      • App Files
      • Metablocks
    • Recommendation
      • Rule
      • Execution Order
      • Auto Escalate
      • Form
      • Action Requests
      • Notification
      • Recommendation Alert
      • Deleted Items
      • Scoring
    • Connector
    • Landing Pages & Favorites
    • Version
    • Manage Access
    • Category
    • Variable
    • Insights
      • Data Delivery Insights
  • How-To Guides
    • Data Streams
      • Manage Data Streams
      • Manage Collections
      • Use Remote Receivers and Publishers
      • Manage Recurrent Data Streams
      • Use Business Case and Notes
      • Run an Integrity Check
      • Check Data Stream Logs
      • Use Live View
      • Use Stream Metrics
      • Troubleshoot a Data Stream
      • Upgrade a Stream Object Version
      • Setup Input Mappings
      • Use Error Endpoints
      • Use the Timeline
      • Context Menu
    • Application
      • Manage Apps
      • Manage Templates
      • Manage Pages
      • Import an App Page
      • Design Pages for Mobile
      • Navigate Between Pages
      • Pass Parameters Between Pages
      • Page Data
      • Manage Connections
      • Check Connector Logs
      • Manage Data Sources
      • Use Data Sources in the Page
      • Use Dynamic Properties
      • Use Expression Properties
      • Use Page Layers
      • Use Block Styling and Devices
      • Use Flex
      • Use Validation
      • Use Variables & Expressions
      • Create and Maintain Notes
      • Manage Widgets
      • Manage App Files
      • Manage Themes
    • Recommendations
      • Manage Categories
      • Manage Recommendations
      • Manage Rules
      • Manage Notifications
      • Manage Notification Templates
      • Subscribe to Notifications
      • Manage Forms
      • Manage Variables
      • Manage Alerts
      • Manage Alerts on Mobile
      • Manage Deleted Recommendation Items
    • Connectors
      • Manage Connectors
      • Building Connectors
      • Packaging Connectors
    • Stream Host
    • Agents
      • Manage Agents
      • Building Agents
      • Packaging Agents
      • Debugging an Agent
    • Manage Versions
    • Manage Access
    • Manage Categories
    • Manage Variables
    • Import, Export, and Clone
    • Publish
      • Admin Unpublish Override
    • Manage Site Settings
    • Manage Landing Pages & Favorites
  • Blocks
    • Common Properties
    • Layout
      • Accordion
      • Box & Data Repeater Box
      • Card & Content Card
      • Field & Fieldset
      • Layout Grid
      • Menu
      • Scroll Box
      • Stacked Layout Horizontal & Vertical
      • Tabs
      • Templated List
      • Toolbar
    • Basic
      • Calendar
      • Check Box
      • Color Selector
      • Data Grid
      • Date Selector
      • Dropdown Grid
      • Embedded Page
      • File Library
      • File Uploader
      • Html Editor
      • Image
      • Indicator
      • List
      • Lookup
      • Number Selector
      • Radio Buttons
      • Range Slider
      • Select Box
      • Switch
      • Tags
      • Text
      • Text Area
      • Textbox
      • Tree Grid
      • Tree List
    • Device Input
      • Location Capture
      • Visual Media Capture
    • AI
      • Azure Copilot
      • ChatGPT Copilot
    • Actions
      • Box Hyperlink
      • Button
      • Data Operations
      • Hyperlink
    • Recommendations
      • Alert Action
      • Alert Analytics
      • Alert Discussion
      • Alert Event Data
      • Alert Form
      • Alert List
      • Alert Timeline
      • Alert Triage
      • Alert Survey
      • Recommendation Chart
    • Visualizations
      • Autodesk Forge
      • Azure Digital Twin Hierarchy
      • Bar Gauge
      • Chart
      • Circular Gauge
      • D3 Visualization
      • Esri Map
      • Image Map
      • Linear Gauge
      • Live Feed
      • Map
      • Pie Chart
      • Pivot Grid
      • Polar Chart
      • Power BI
      • Sparkline
      • Time Series Analysis
      • Tree Map
      • Unity
      • Unity (Legacy)
    • Advanced
      • Metablock
    • Widgets
  • Administration
    • Administrative Accounts
    • Language
    • Companies
      • Register a Company
      • Manage a Company
      • Manage Company Subscriptions
      • Manage License
    • Subscriptions
      • Manage User Access
      • Setup Auto Approval/Default Subscriptions
      • Request and Apply a License
    • Users
      • Invite a User
      • Register an Account
      • Profile
      • Change Password
      • Reset Password
      • Delete a User
      • Change Business Role
  • Installation
    • Overview
    • 1. Preparation
    • 2. Install XMPro
      • Azure
      • AWS
      • On-Premise
    • 3. Complete Installation
      • Configure Auto Scale (Optional)
      • Configure Health Checks (Optional)
      • Configure Logging (Optional)
      • Configure SSO (Optional)
        • SSO - Azure AD
        • SSO - ADFS
      • Create Base Company
      • Install Stream Host
        • Windows x64
        • Azure Web Job
        • Ubuntu 20.04 x64
        • Docker
      • Install Agents & Connectors
  • Release Notes
    • v4.4.18
    • v4.4.17
    • v4.4.16
    • v4.4.15
    • v4.4.14
    • v4.4.13
    • v4.4.12
    • v4.4.11
    • v4.4.10
    • v4.4.9
    • v4.4.8
    • v4.4.7
    • v4.4.6
    • v4.4.5
    • v4.4.4
    • v4.4.3
    • v4.4.2
    • v4.4.1
    • v4.4.0
    • Archived
      • v4.3.12
      • v4.3.11
      • v4.3.10
      • v4.3.9
      • v4.3.8
      • v4.3.7
      • v4.3.6
      • v4.3.5
      • v4.3.4
      • v4.3.3
      • v4.3.2
      • v4.3.1
      • v4.3.0
        • v4.2.3
        • v4.2.2
        • v4.2.1
      • v4.2.0
      • v4.1.13
      • v4.1.0
      • v4.0.0
Powered by GitBook
On this page
  • XMPro I3C Intelligent Digital Twins Strategy Framework
  • XMPro I3C Intelligent Digital Twins Strategy Framework
  • Integrated: Real-time and Contextualized
  • Intelligent: Analytics and Simulation
  • Interactive: Decisions and Visualization
  • Composable: No Code Modular Digital Twin Platform and Marketplace

Was this helpful?

Export as PDF
  1. Resources
  2. FAQs
  3. External Content
  4. Blogs
  5. 2023

XMPro I3C Intelligent Digital Twins Strategy Framework

PreviousThe Benefits of Using Digital Twins in Smart ManufacturingNextThe TOP 5 use cases for composable digital twins in mining – and how to use AI to supercharge result

Last updated 6 days ago

Was this helpful?

,

XMPro I3C Intelligent Digital Twins Strategy Framework

Posted on by

XMPro I3C Intelligent Digital Twins Strategy Framework

Introducing XMPro’s I3C Intelligent Digital Twin framework, a cutting-edge solution designed to help organizations harness the power of Intelligent Digital Twins (IDTs) in their operations. Building upon the concepts of traditional digital twins and inspired by Dr. Michael Grieves’ vision , our I3C framework aims to empower organizations with a strategic roadmap for the seamless adoption and integration of IDTs. By leveraging the active, online, goal-seeking, and anticipatory nature of IDTs, businesses can unlock unprecedented levels of operational efficiency, optimize processes, and minimize resource usage.

Figure 3- XMPro I3C Intelligent Digital Twin Framework: Integrated, Intelligent, Interactive, and Composable\

In this blog post, we delve into the four foundational pillars of Intelligent Digital Twins that set them apart from traditional solutions: Integrated, Intelligent, Interactive, and Composable. We’ll explore how these aspects work together to create a powerful, cohesive platform, empowering organizations to harness real-time data, leverage advanced analytics, make data-driven decisions, and rapidly adapt to evolving business landscapes.

Integrated: Real-time and Contextualized

Integrated Digital Twins unite data from diverse, heterogeneous sources, creating a cohesive, common operating picture that enhances decision-making capabilities beyond traditional siloed data approaches.

An Integrated Digital Twin approach can reduce integration costs and time by 30%-50% over the lifecycle of digital twin applications. This is possible by following the three principles:

Figure 4 -XMPro I3C Intelligent Digital Twin Framework: Integrated\

Standards-based APIs and Packaged Business Capabilities:

Organizations should adopt a standards-based API approach when integrating data from heterogeneous sources for digital twins, leveraging XMPro Agents in data streams for several compelling reasons:

  • Interoperability: By adhering to standardized APIs, XMPro Agents can communicate and exchange data with various systems, regardless of the underlying technology or vendor. This seamless integration reduces compatibility issues and fosters collaboration between different platforms.

  • Simplified Integration: Utilizing standards-based APIs, XMPro Agents streamline the process of connecting diverse data sources, providing a consistent and well-documented interface for data exchange. This approach simplifies the complexity of integrating multiple systems, saving time and resources.

  • Improved Data Quality: Standardized APIs, implemented by XMPro Agents, enforce data consistency and validation rules, maintaining the quality and accuracy of the exchanged data. Accurate, real-time data is crucial for digital twins to generate insights and drive decision-making.

  • Faster Deployment: XMPro Agents using standards-based APIs enable organizations to rapidly deploy digital twin solutions, as the standardized interface allows for quicker integration of new data sources or updates to existing ones. This accelerates time-to-value for digital twin implementations.

  • Scalability and Adaptability: A standards-based API approach, combined with XMPro Agents, provides a flexible and modular foundation for digital twin solutions, making it easier to scale and adapt the system as the organization’s needs change. This flexibility ensures the digital twin solution remains relevant and effective over time.

  • Future-proofing: Adopting standards-based APIs with XMPro Agents helps future-proof digital twin implementations, as standardized interfaces are more likely to be supported by new technologies or vendors entering the market. This reduces the risk of obsolescence and ensures a longer lifespan for the digital twin solution.

  • Packaged Business Capabilities (PBCs): PBCs allow organizations to encapsulate specific functionalities or processes as modular, reusable components. XMPro Agents can easily integrate these components into the digital twin architecture to address various business needs and requirements. This approach enables organizations to rapidly deploy and scale digital twin solutions while maintaining flexibility and adaptability to changing business environments.

Model-driven development and integration:

Model-driven development and integration approaches offer several key benefits when building composable digital twins:

  • Abstraction and Simplification: Model-driven development allows developers to focus on high-level business logic and functionality by abstracting away the underlying complexities of the system. This simplification enables quicker and more efficient development of digital twin components.

  • Reusability and Modularity: With a model-driven approach, digital twin components are designed as reusable and modular building blocks. This allows organizations to easily compose, reconfigure, and extend their digital twin solutions to meet changing requirements or address new use cases, enhancing flexibility and adaptability.

  • Consistency and Standardization: Model-driven development promotes consistency and standardization across the digital twin solution by providing a unified methodology and framework for designing components. This ensures that the various parts of the digital twin system are compatible and can work together seamlessly.

  • Improved Quality and Maintainability: Model-driven development can lead to improved software quality and maintainability by enforcing best practices and reducing the potential for human error. Additionally, the use of high-level models can make it easier to understand, troubleshoot, and modify the digital twin system as needed.

  • Enhanced Collaboration: A model-driven approach fosters better collaboration between various stakeholders, such as domain experts, developers, and system architects. By providing a common, visual representation of the digital twin system, model-driven development enables all parties to more effectively communicate, align their efforts, and work together towards a shared goal.

Bi-directional active connection between physical and digital twin

Bi-directional active connections between physical and digital twins offer several key benefits that enhance the overall effectiveness and value of digital twin technology:

  • Real-time Data Synchronization: A bi-directional connection ensures that the digital twin continuously receives real-time data from the physical asset, enabling it to accurately reflect the asset’s current state and performance. Conversely, the physical asset can receive updates or adjustments from the digital twin, enabling more dynamic and responsive interactions between the two.

  • Improved Decision-Making: With up-to-date and accurate data, digital twins can generate more reliable insights and recommendations, empowering decision-makers to make well-informed choices based on the current state of the physical asset. This leads to better outcomes and more efficient use of resources.

  • Enhanced Predictive and Prescriptive Capabilities: Bi-directional connections enable digital twins to learn from the physical asset’s behavior and continuously refine their predictive models. This results in more accurate predictions and prescriptions, which can help prevent issues, optimize performance, and extend the asset’s lifespan.

  • Faster Response to Changes: The active connection allows digital twins to rapidly detect and respond to changes in the physical asset’s conditions or performance. This enables organizations to address potential issues or opportunities more quickly, reducing downtime and mitigating risks.

  • Closed-Loop Control: Bi-directional active connections enable closed-loop control, where the digital twin can not only monitor the physical asset but also directly influence its operation. This allows for more precise control, automation, and optimization of asset performance, further improving efficiency and reducing costs.

  • Better Integration with Business Systems: The active connection between the digital twin and the physical asset facilitates seamless integration with other business systems, such as ERP or CRM, enabling organizations to leverage the insights from digital twins across their entire operation.

  • Continuous Improvement: Bi-directional connections foster a continuous feedback loop between the digital and physical twins, enabling ongoing improvement and adaptation as the physical asset and its operating environment evolve over time. This helps ensure that the digital twin remains relevant, effective, and aligned with the organization’s objectives.

Intelligent: Analytics and Simulation

By consolidating data into a common operating picture, digital twins provide the ideal foundation for harnessing the power of AI and machine learning. This enables the generation of novel insights and recommendations previously unattainable with isolated point solutions. As a result, intelligent digital twins unlock new possibilities for data-driven decision-making and propel organizations toward greater efficiency and innovation.

Intelligence in Digital Twins can result in 10x effectiveness improvement in Composable Digital Twin applications. The following three mechanisms for leveraging AI and intelligence enables these business outcomes:

Figure 5 -XMPro I3C Intelligent Digital Twin Framework: Intelligent\

Executable AI and Machine Learning for Algorithmic Business Processes

Embedding XMPro AI Agents in XMPro Data Streams enables Executable AI and Machine Learning for Algorithmic Business Processes, which in turn, enhances the capabilities of operational digital twins. This integration offers several key benefits:

  • Real-time Analytics: By incorporating AI Agents into Data Streams, digital twins can process and analyze data in real-time, generating immediate insights and recommendations. This allows organizations to make informed decisions and respond to changing conditions more quickly, improving operational efficiency and agility.

  • Continuous Learning: AI Agents embedded in Data Streams can continuously learn from the data they process, refining their models and algorithms over time. This ongoing improvement enables digital twins to deliver increasingly accurate predictions and recommendations, helping organizations optimize asset performance and proactively address potential issues.

  • Automation of Complex Processes: Executable AI and Machine Learning enable digital twins to automate complex, data-driven business processes, streamlining operations and reducing the need for manual intervention. This automation can lead to significant cost savings, increased productivity, and better resource allocation.

  • Personalized and Adaptive Solutions: AI Agents embedded in Data Streams can adapt their algorithms to the specific needs and context of each digital twin, delivering personalized and adaptive solutions that cater to the unique requirements of individual assets and processes. This customization enhances the effectiveness of digital twins and drives better outcomes.

  • Integration of AI into Core Business Processes: By baking AI into operational digital twins, organizations can seamlessly integrate advanced analytics and machine learning capabilities into their core business processes. This deep integration allows for more holistic decision-making and drives greater value from AI investments.

  • MLOps: Incorporating MLOps practices into the AI Agent lifecycle ensures that the development, deployment, and maintenance of machine learning models in digital twins are efficient, scalable, and reliable. This leads to faster time-to-value, improved model performance, and better alignment between AI capabilities and business objectives.

Innovation AI for Experimentation and Front Running Simulation

XMPro Intelligent Digital Twins offer a powerful platform for facilitating innovation and experimentation in AI by incorporating XMPro Notebooks based on fully embedded and integrated Jupyter Notebooks. XMPro Notebooks provide an interactive environment that allows subject matter experts (SMEs) to experiment with data, algorithms, and models in real time.

  • Rapid Experimentation: XMPro Notebooks enable subject matter experts (SMEs) to quickly test ideas, algorithms, and models, promoting a faster innovation cycle and reducing time-to-market for new solutions.

  • Collaboration and Knowledge Sharing: The interactive environment of XMPro Notebooks (Jupyter Hub) allows SMEs to collaborate and share insights easily, fostering cross-functional teamwork and enhancing the overall decision-making process.

  • Accessible AI for Non-Technical Users: By embedding Jupyter Notebooks within the Intelligent Digital Twin platform, XMPro empowers SMEs without deep technical expertise to harness the power of AI, democratizing advanced analytics and promoting innovation across the organization.

  • Optimized Processes and Decision-Making: Through Front Running Simulations, XMPro Notebooks enable SMEs to make data-driven decisions, optimizing processes, reducing operational costs, and improving overall efficiency.

  • Continuous Improvement: The iterative nature of XMPro Notebooks allows SMEs to refine their digital twins and AI models constantly, ensuring that they remain relevant, accurate, and effective as business environments and requirements evolve.

Augmented AI for Self-learning Digital Twins

XMPro Augmented AI for Self-learning Digital Twins harnesses the power of artificial intelligence and machine learning to enhance the decision support and automation capabilities of Digital Twins built on the XMPro platform.

  • Real-time Anomaly Detection: XMPro Augmented AI utilizes AI and Machine Learning techniques to monitor real-time and historical recommendation data, identifying unusual patterns or deviations from expected behavior. This allows organizations to detect anomalies early, enabling rapid response and mitigation of potential issues in their Digital Twins.

  • Pattern Discovery: By analyzing XMPro real-time and historical recommendation data, Augmented AI can uncover hidden patterns and trends, helping organizations understand complex relationships within their Digital Twins. This deeper understanding of the underlying dynamics leads to more informed decision-making and improved decision support.

  • Continuous Learning and Adaptation: XMPro Augmented AI leverages self-learning capabilities to continuously refine its models and algorithms as new data is processed. This enables Digital Twins built on the XMPro platform to adapt and evolve over time, ensuring their insights and recommendations remain relevant and effective in a changing environment.

  • Enhanced Decision Automation: By incorporating AI and Machine Learning into the decision-making process, XMPro Augmented AI can automate complex decisions and optimize decision logic within Digital Twins. This not only reduces manual intervention but also drives efficiency, accuracy, and consistency in decision-making across the organization.

  • Performance Optimization: XMPro Augmented AI leverages the power of AI and Machine Learning to identify opportunities for improvement in Digital Twins built on the XMPro platform. By analyzing recommendation data and identifying patterns, Augmented AI can suggest optimizations that enhance the overall performance and effectiveness of the Digital Twins, leading to better outcomes and increased operational efficiency.

Interactive: Decisions and Visualization

Digital Twins offer invaluable decision support and automation for business users, enabling them to act on the intelligence and recommendations derived from these virtual representations in a multimodal, interactive manner.

Figure 6 -XMPro I3C Intelligent Digital Twin Framework: Interactive\

AI-enabled Recommendations for Prescriptive Analytics

XMPro Recommendations revolutionizes expert knowledge capture by combining rules-based methodologies with artificial intelligence, empowering digital twins to deliver prescriptive guidance with newfound precision. By leveraging AI-based recommendations, even less experienced users can receive interactive, co-pilot guidance to navigate complex decision-making processes. Here, we outline three key benefits of utilizing prescriptive analytics for recommendations in a digital twin:

  • Enhanced Decision-Making: Prescriptive analytics enables digital twins to provide users with actionable insights and specific recommendations, empowering them to make informed decisions and optimize their operations.

  • Adaptive Learning: As AI-based recommendations continuously learn from historical and real-time data, they become increasingly accurate and relevant, allowing digital twins to adapt and improve their prescriptive guidance over time.

  • Expertise Democratization: By offering co-pilot interactive guidance, prescriptive analytics democratizes expert knowledge, allowing users of varying experience levels to effectively harness the power of digital twins and make well-informed decisions.

Generative and Collaborative Multi-experience User Interfaces

Generative and Collaborative Multi-experience User Interfaces (UI) offer a transformative approach to designing and interacting with composable digital twins. By incorporating not only traditional desktop and mobile user interfaces, but also embracing emerging technologies such as Augmented Reality (AR) and Virtual Reality (VR), these multi-experience UIs provide a seamless and immersive experience across a wide spectrum of devices and platforms. Here, we highlight three key benefits of Generative and Collaborative Multi-experience User Interfaces for composable digital twins:

  • Enhanced User Engagement: By offering a diverse range of user interfaces, including AR and VR, multi-experience UIs captivate users’ attention and foster deeper engagement with digital twins, resulting in more effective decision-making and improved overall satisfaction.

  • Collaboration and Knowledge Sharing: Multi-experience UIs enable users to collaborate and share knowledge across different platforms and devices, fostering a more connected and informed workforce. This collaborative environment promotes cross-functional teamwork and leads to better, more informed decision-making.

  • Personalized and Context-Aware Experiences: Generative and Collaborative Multi-experience User Interfaces can adapt to users’ preferences, device capabilities, and contextual information, delivering tailored and intuitive interactions that cater to individual needs. By providing a personalized experience, multi-experience UIs ensure that users can effectively harness the full potential of composable digital twins, regardless of their preferred interface or device.

Foundation for the Industrial Metaverse

Digital twins are the foundation of the Industrial Metaverse because they serve as the bridge between the physical and digital worlds, enabling seamless integration, collaboration, and innovation across various industries. By creating virtual representations of assets, processes, and systems, digital twins allow organizations to harness the power of advanced analytics, AI, and machine learning to gain valuable insights, optimize operations, and drive decision-making. Here are several key reasons why digital twins are essential to the Industrial Metaverse:

  • Data Integration and Analysis: Digital twins enable organizations to aggregate and analyze data from multiple sources, providing a comprehensive view of their assets and processes. This data-driven approach enhances decision-making capabilities and offers a more accurate understanding of the real-world systems they represent.

  • Real-time Insights and Predictive Capabilities: Digital twins offer real-time monitoring and predictive analytics, allowing organizations to proactively identify potential issues, optimize performance, and improve overall efficiency. These capabilities help businesses respond more effectively to changing market conditions and minimize operational disruptions.

  • Collaboration and Innovation: The Industrial Metaverse fosters collaboration among different stakeholders, including manufacturers, suppliers, and customers. This interconnected ecosystem allows organizations to share knowledge, resources, and expertise, driving innovation and enabling the development of new products, services, and business models.

  • Enhanced Simulation and Experimentation: Digital twins provide a virtual environment for testing and simulating various scenarios, reducing the risks and costs associated with physical trials. This enables organizations to experiment with new ideas, strategies, and technologies, accelerating the pace of innovation and growth.

  • Scalability and Flexibility: Digital twins are highly scalable and adaptable, making it easier for organizations to expand their operations, adopt new technologies, and respond to changing market demands. This flexibility ensures that businesses can maintain a competitive edge in a rapidly evolving digital landscape.

By serving as the foundation of the Industrial Metaverse, digital twins are transforming the way organizations operate, collaborate, and innovate, unlocking new opportunities for growth and success in the digital era.

Composable: No Code Modular Digital Twin Platform and Marketplace

Composability in a No Code Modular Digital Twin Platform and a supporting Marketplace are foundational elements of an intelligent digital twin framework because they enable organizations to rapidly design, develop, and deploy digital twin solutions tailored to their unique needs and requirements.

Analysts predicts that by 2023, organizations that have adopted an intelligent composable approach will outpace the competition by 80% in the speed of new feature implementation. Composable Digital Twins is a typical implementation of composable business approach.

Figure 7 – XMPro I3C Intelligent Digital Twin Framework: Composable\

By leveraging modular components and pre-built templates, businesses can streamline the development process, foster collaboration, drive innovation across their operations, and enhance security. Here are six supporting reasons to use a Composable Digital Twin platform like XMPro:

  • Rapid Deployment: Composability in a No Code platform such as XMPro allows organizations to quickly assemble and deploy digital twin solutions by combining pre-built modules, templates, and components, significantly reducing development time and accelerating time-to-value.

  • Flexibility and Adaptability: A modular platform enables businesses to easily modify, expand, or reconfigure their digital twin solutions in response to evolving needs or emerging opportunities, ensuring that their digital twin framework remains relevant and effective over time.

  • Collaborative Development: No Code platforms and supporting Marketplaces foster collaboration among various stakeholders, including domain experts, developers, and system architects, facilitating better communication and alignment of efforts towards a shared goal.

  • Reusability and Standardization: Modular digital twin platforms like XMPro, promote reusability and standardization, as organizations can leverage pre-built components and templates across multiple digital twin solutions, ensuring consistency, compatibility, and seamless integration.

  • Security: Composability in a No Code platform ensures that security best practices are consistently applied across all digital twin components, safeguarding sensitive data and protecting against potential threats, while promoting trust and confidence in the digital twin ecosystem.

  • Cost and Resource Efficiency: Composability in a No Code Modular Digital Twin Platform like XMPro, reduces the need for extensive custom development, lowering overall development costs and allowing organizations to allocate their resources more effectively.

Composability in a No Code Modular Digital Twin Platform and a supporting Marketplace provide the foundation for an intelligent digital twin framework by enabling rapid deployment, flexibility, collaboration, reusability, enhanced security, and cost efficiency, empowering organizations to unlock the full potential of digital twin technology.

XMPro’s I3C Intelligent Digital Twin framework offers a comprehensive, cutting-edge solution that enables organizations to embrace the future of industry and digital transformation. By integrating real-time data and insights, harnessing AI and machine learning capabilities, revolutionizing decision-making and collaboration through interactive digital twins, and leveraging the power of composability with no-code modular platforms and marketplaces, organizations can unlock the full potential of digital twin technology. The I3C framework not only ensures seamless adoption and integration of Intelligent Digital Twins but also empowers businesses to optimize their operations, enhance decision-making, and drive innovation. By adopting the XMPro I3C framework, organizations can confidently navigate the ever-evolving digital landscape and thrive in the era of Intelligent Digital Twins. Don’t miss the opportunity to revolutionize your operations, accelerate growth, and gain a competitive edge. Contact us today to discuss how the framework can be applied to your Digital Twin journey. {See blog post 3 for XMPro AI announcement}

estimates that digital twins can improve worker productivity by 10% to 15%, reduce errors and rework by 10% to 20%, and increase worker safety by 10% to 20% in the manufacturing sector. Interactive Digital Twins based on the following three principles enable those business outcomes:

McKinsey
Blog
CEO'S Blog
April 12, 2023
Pieter van Schalkwyk
(The Roadmap to Intelligent Digital Twins)